
UQpy Documentation
Release 1.0.0

Michael D. Shields, Dimitris Giovanis

Jun 08, 2018

Contents:

1 UQpy package 1
1.1 Submodules . 1
1.2 UQpy.Distributions module . 1
1.3 UQpy.Reliability module . 1
1.4 UQpy.RunModel module . 4
1.5 UQpy.SampleMethods module . 6
1.6 UQpy.Surrogates module . 11
1.7 Module contents . 12

2 Indices and tables 13

Python Module Index 15

i

ii

CHAPTER 1

UQpy package

1.1 Submodules

1.2 UQpy.Distributions module

This module contains functionality for all the distribution supported in UQpy.

1.3 UQpy.Reliability module

This module contains functionality for all the reliability methods supported in UQpy.

class UQpy.Reliability.SubsetSimulation(dimension=None, samples_init=None,
nsamples_ss=None, p_cond=None,
pdf_target_type=None, pdf_target=None,
pdf_target_params=None,
pdf_proposal_type=None,
pdf_proposal_scale=None, algorithm=None,
model_type=None, model_script=None, in-
put_script=None, output_script=None)

Perform Subset Simulation.

This class estimates probability of failure for a user-defined model using Subset Simulation

References: S.-K. Au and J. L. Beck, “Estimation of small failure probabilities in high dimensions by subset
simulation,”

Probabilistic Eng. Mech., vol. 16, no. 4, pp. 263–277, Oct. 2001.

Input:

Parameters

1

UQpy Documentation, Release 1.0.0

• dimension (int) – A scalar value defining the dimension of target density function.
Default: 1

• nsamples_ss (int) – Number of samples to generate in each conditional subset. No
Default Value: nsamples_ss must be prescribed

• p_cond (float) – Conditional probability at each level. Default: p_cond = 0.1

• algorithm (str) – Algorithm used to generate MCMC samples. Options:

’MH’: Metropolis Hastings Algorithm ‘MMH’: Component-wise Modified Metropolis
Hastings Algorithm ‘Stretch’: Affine Invariant Ensemble MCMC with stretch moves

Default: ‘MMH’

• pdf_target_type (str) – Type of target density function for acceptance/rejection in
MMH. Not used for MH or Stretch. Options:

’marginal_pdf’: Check acceptance/rejection for a candidate in MMH using the marginal pdf
For independent variables only

’joint_pdf’: Check acceptance/rejection for a candidate in MMH using the joint pdf

Default: ‘marginal_pdf’

• pdf_target (function, function list, or str) – Target density function
from which to draw random samples The target joint probability density must be a function,
or list of functions, or a string. If type == ‘str’

The assigned string must refer to a custom pdf defined in the file custom_pdf.py in the working
directory

If type == function The function must be defined in the python script calling MCMC

If dimension > 1 and pdf_target_type=’marginal_pdf’, the input to pdf_target is a list of size
[dimensions x 1] where each item of the list defines a marginal pdf.

Default: Multivariate normal distribution having zero mean and unit standard deviation

• pdf_target_params (list) – Parameters of the target pdf

• pdf_proposal_type (str or str list) – Type of proposal density function for
MCMC. Only used with algorithm = ‘MH’ or ‘MMH’ Options:

’Normal’ : Normal proposal density ‘Uniform’ : Uniform proposal density

Default: ‘Uniform’ If dimension > 1 and algorithm = ‘MMH’, this may be input as a list to
assign different proposal

densities to each dimension. Example pdf_proposal_type = [‘Normal’,’Uniform’].

If dimension > 1, algorithm = ‘MMH’ and this is input as a string, the proposal densities for all
dimensions are set equal to the assigned proposal type.

• pdf_proposal_scale – Scale of the proposal distribution If algorithm == ‘MH’ or
‘MMH’

For pdf_proposal_type = ‘Uniform’ Proposal is Uniform in [x-
pdf_proposal_scale/2, x+pdf_proposal_scale/2]

For pdf_proposal_type = ‘Normal’ Proposal is Normal with standard deviation
equal to pdf_proposal_scale

2 Chapter 1. UQpy package

UQpy Documentation, Release 1.0.0

If algorithm == ‘Stretch’

pdf_proposal_scale sets the scale of the stretch density g(z) = 1/sqrt(z) for z in
[1/pdf_proposal_scale, pdf_proposal_scale]

Default value: dimension x 1 list of ones

• model_type (str) – Define the model as a python file or as a third party software model
(e.g. Matlab, Abaqus, etc.) Options: None - Run a third party software model

’python’ - Run a python model. When selected, the python file must contain a class RunPythonModel
that takes, as input, samples and dimension and returns quantity of interest (qoi) in
in list form where there is one item in the list per sample. Each item in the qoi list
may take type the user prefers.

Default: None

• model_script –

Defines the script (must be either a shell script (.sh) or a python script (.py)) used to call
the model.

This is a user-defined script that must be provided. If model_type = ‘python’, this must be a
python script (.py) having a specified class

structure. Details on this structure can be found in the UQpy documentation.

• input_script –

Defines the script (must be either a shell script (.sh) or a python script (.py)) that takes
samples generated by UQpy from the sample file generated by UQpy (UQpy_run_{0}.txt)
and imports them into a usable input file for the third party solver. Details on
UQpy_run_{0}.txt can be found in the UQpy documentation.

If model_type = None, this is a user-defined script that the user must provide. If model_type
= ‘python’, this is not used.

• output_script (str) –

(Optional) Defines the script (must be either a shell script (.sh) or python script (.py))
that extracts quantities of interest from third-party output files and saves them to a file
(UQpy_eval_{}.txt) that can be read for postprocessing and adaptive sampling methods
by UQpy.

If model_type = None, this is an optional user-defined script. If not provided, all run files
and output files will be saved in the folder ‘UQpyOut’ placed in the current working
directory. If provided, the text files UQpy_eval_{}.txt are placed in this directory and all
other files are deleted.

If model_type = ‘python’, this is not used.

Type model_script: str

Type input_script: str

Output:

Return self.pf Probability of failure estimate

Rtype self.pf float

Return self.cov Coefficient of variation

Rtype self.cov float

1.3. UQpy.Reliability module 3

UQpy Documentation, Release 1.0.0

1.4 UQpy.RunModel module

This module contains functionality for the run model method supported in UQpy.

class UQpy.RunModel.RunModel(samples=None, dimension=None, model_type=None,
model_script=None, input_script=None, output_script=None,
cpu=None)

A class used to run a computational model a specified sample points.

This class takes samples, either passed as a variable or read through a text file, and runs a specified computational
model at those sample points. This can be done by either passing variables and running entirely in python or by
calling shell scripts that run a third-party software model.

Input: :param samples: The sample values at which the model will be evaluated. Samples can be passed directly
as an array

or can be passed through the text file ‘UQpy_Samples.txt’. If passing samples via text file, set
samples = None or do not set the samples input.

Parameters

• dimension (int) – The dimension of the random variable whose samples are being
passed to the model.

• model_type (str) – Define the model as a python file or as a third party software model
(e.g. Matlab, Abaqus, etc.) Options: None - Run a third party software model

’python’ - Run a python model. When selected, the python file must contain a class RunPythonModel
that takes, as input, samples and dimension and returns quantity of interest (qoi) in
in list form where there is one item in the list per sample. Each item in the qoi list
may take type the user prefers.

Default: None

• model_script –

Defines the script (must be either a shell script (.sh) or a python script (.py)) used to call
the model.

This is a user-defined script that must be provided. If model_type = ‘python’, this must be a
python script (.py) having a specified class

structure. Details on this structure can be found in the UQpy documentation.

• input_script –

Defines the script (must be either a shell script (.sh) or a python script (.py)) that takes
samples generated by UQpy from the sample file generated by UQpy (UQpy_run_{0}.txt)
and imports them into a usable input file for the third party solver. Details on
UQpy_run_{0}.txt can be found in the UQpy documentation.

If model_type = None, this is a user-defined script that the user must provide. If model_type
= ‘python’, this is not used.

• output_script (str) –

(Optional) Defines the script (must be either a shell script (.sh) or python script (.py))
that extracts quantities of interest from third-party output files and saves them to a file
(UQpy_eval_{}.txt) that can be read for postprocessing and adaptive sampling methods
by UQpy.

4 Chapter 1. UQpy package

UQpy Documentation, Release 1.0.0

If model_type = None, this is an optional user-defined script. If not provided, all run files
and output files will be saved in the folder ‘UQpyOut’ placed in the current working
directory. If provided, the text files UQpy_eval_{}.txt are placed in this directory and all
other files are deleted.

If model_type = ‘python’, this is not used.

• cpu (int) – Number of CPUs over which to run the job. UQpy distributes the total number
of model evaluations over this number of CPUs Default: 1 - Runs serially

Type model_script: str

Type input_script: str

Output: :return model_eval: An instance of a sub-class that contains the model solutions. Depending on how
the model

is run, model_eval is an instance of a different class.

If model_type = ‘python’, model_eval is an instance of the class RunPythonModel defined in the
python model_script.

If model_type = ‘None’ and cpu <= 1, model_eval is an instance of the class RunSerial If model_type
= ‘None’ and cpu > 1, model_eval is an instance of the class RunParallel Regardless of model_type,
model_eval has the following key attributes:

model_eval.samples = Sample values at which the model has been evaluated.
model_eval.QOI = Solution of the model at each sample value.

Return type

model_eval: list In general it is a list. The two key attributes of model_eval have the following
type:

model_eval.samples = numpy array model_eval.QOI = list

class RunParallel(samples=None, cpu=None, model_script=None, input_script=None, out-
put_script=None, dimension=None)

A subclass of RunModel to run a third-party software model with parallel processing.

Most attributes of this subclass are inhereted from RunModel. The only variable that is not inherited is
QOI.

Input: :param samples: Inherited from RunModel. See its documentation. :type samples: ndarray

Parameters

• dimension (int) – Inherited from RunModel. See its documentation.

• model_script – Inherited from RunModel. See its documentation.

• input_script – Inherited from RunModel. See its documentation.

• output_script (str) – Inherited from RunModel. See its documentation.

Type model_script: str

Type input_script: str

Output: :return QOI: List containing the Quantity of Interest from the simulations

Each item in the list corresponds to one simulation

Rtype QOI list Each item in the list may be of arbitrary data type (e.g. int, float, ndarray, etc.)

1.4. UQpy.RunModel module 5

UQpy Documentation, Release 1.0.0

class RunSerial(samples=None, dimension=None, model_script=None, input_script=None, out-
put_script=None)

A subclass of RunModel to run a third-party software model serially (without parallel processing).

Most attributes of this subclass are inherited from RunModel. The only variable that is not inherited is
QOI.

Input: :param samples: Inherited from RunModel. See its documentation. :type samples: ndarray

Parameters

• dimension (int) – Inherited from RunModel. See its documentation.

• model_script – Inherited from RunModel. See its documentation.

• input_script – Inherited from RunModel. See its documentation.

• output_script (str) – Inherited from RunModel. See its documentation.

Type model_script: str

Type input_script: str

Output: :return QOI: List containing the Quantity of Interest from the simulations

Each item in the list corresponds to one simulation

Rtype QOI list Each item in the list may be of arbitrary data type (e.g. int, float, ndarray, etc.)

1.5 UQpy.SampleMethods module

This module contains functionality for all the sampling methods supported in UQpy.

class UQpy.SampleMethods.LHS(dimension=1, icdf=None, icdf_params=None,
lhs_criterion=’random’, lhs_metric=’euclidean’, lhs_iter=100,
nsamples=None)

Generate samples based on the Latin Hypercube Design.

A class that creates a Latin Hypercube Design for experiments. Firstly, samples on hypercube [0, 1]^n are
generated and then translated to the parameter space.

Input:

Parameters

• dimension (int) – A scalar value defining the dimension of the random variables De-
fault: len(i_cdf)

• icdf (function/string list) – Inverse cumulative distribution for each random
variable. The inverse cdf may be defined as a function, a string, a list of functions, a list of
strings, or a

list of functions and strings

Each item in the list specifies the distribution of the corresponding random variable. If icdf[i]
is a string, the cdf is defined in Distributions.py or custom_dist.py If icdf[i] is a function,
the user must define this function in the script and pass it

• icdf_params (list) – Parameters of the inverse cdf (icdf) Parameters for each random
variable are defined as arrays Each item in the list, icdf_params[i], specifies the parameters
for the corresponding inverse cdf,

icdf[i]

6 Chapter 1. UQpy package

UQpy Documentation, Release 1.0.0

• lhs_criterion (str) – The criterion for generating sample points Options:

1. ’random’ - completely random

2. ’centered’ - points only at the centre

3. ’maximin’ - maximising the minimum distance between points

4. ’correlate’ - minimizing the correlation between the points

Default: ‘random’

• lhs_metric (str) – The distance metric to use. Supported metrics are ‘braycurtis’,
‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘dice’, ‘euclidean’, ‘hamming’,
‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’, ‘russell-
rao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’. Default: ‘eu-
clidean’

• lhs_iter (int) – The number of iteration to run. Required only for maximin, correlate
and criterion Default: 100

• nsamples (int) – Number of samples to generate No Default Value: nsamples must be
prescribed

Output :return: LHS.samples: Set of LHS samples :rtype: LHS.samples: ndarray

Returns LHS.samplesU01: Set of uniform LHS samples on [0, 1]^dimension

Return type LHS.samplesU01: ndarray

class UQpy.SampleMethods.MCMC(dimension=None, pdf_proposal_type=None,
pdf_proposal_scale=None, pdf_target_type=None,
pdf_target=None, pdf_target_params=None, algorithm=None,
jump=None, nsamples=None, seed=None, nburn=None)

Generate samples from an arbitrary probability density function using Markov Chain Monte Carlo.

This class generates samples from an arbitrary user-specified distribution using Metropolis-Hastings(MH), Mod-
ified Metropolis-Hastings, of Affine Invariant Ensemble Sampler with stretch moves.

References: S.-K. Au and J. L. Beck, “Estimation of small failure probabilities in high dimensions by subset
simulation,”

Probabilistic Eng. Mech., vol. 16, no. 4, pp. 263–277, Oct. 2001.

10. Goodman and J. Weare, “Ensemble samplers with affine invariance,” Commun. Appl. Math. Comput. Sci., vol. 5,
no. 1, pp. 65–80, 2010.

Input: :param dimension: A scalar value defining the dimension of target density function.

Default: 1

Parameters

• pdf_proposal_type (str or str list) – Type of proposal density function for
MCMC. Only used with algorithm = ‘MH’ or ‘MMH’ Options:

’Normal’ : Normal proposal density ‘Uniform’ : Uniform proposal density

Default: ‘Uniform’ If dimension > 1 and algorithm = ‘MMH’, this may be input as a list to
assign different proposal

densities to each dimension. Example pdf_proposal_type = [‘Normal’,’Uniform’].

1.5. UQpy.SampleMethods module 7

UQpy Documentation, Release 1.0.0

If dimension > 1, algorithm = ‘MMH’ and this is input as a string, the proposal densities for all
dimensions are set equal to the assigned proposal type.

• pdf_proposal_scale – Scale of the proposal distribution If algorithm == ‘MH’ or
‘MMH’

For pdf_proposal_type = ‘Uniform’ Proposal is Uniform in [x-
pdf_proposal_scale/2, x+pdf_proposal_scale/2]

For pdf_proposal_type = ‘Normal’ Proposal is Normal with standard deviation
equal to pdf_proposal_scale

If algorithm == ‘Stretch’

pdf_proposal_scale sets the scale of the stretch density g(z) = 1/sqrt(z) for z in
[1/pdf_proposal_scale, pdf_proposal_scale]

Default value: dimension x 1 list of ones

• pdf_target_type (str) – Type of target density function for acceptance/rejection in
MMH. Not used for MH or Stretch. Options:

’marginal_pdf’: Check acceptance/rejection for a candidate in MMH using the marginal pdf
For independent variables only

’joint_pdf’: Check acceptance/rejection for a candidate in MMH using the joint pdf

Default: ‘marginal_pdf’

• pdf_target (function, function list, or str) – Target density function
from which to draw random samples The target joint probability density must be a function,
or list of functions, or a string. If type == ‘str’

The assigned string must refer to a custom pdf defined in the file custom_pdf.py in the working
directory

If type == function The function must be defined in the python script calling MCMC

If dimension > 1 and pdf_target_type=’marginal_pdf’, the input to pdf_target is a list of size
[dimensions x 1] where each item of the list defines a marginal pdf.

Default: Multivariate normal distribution having zero mean and unit standard deviation

• pdf_target_params (list) – Parameters of the target pdf

• algorithm (str) – Algorithm used to generate random samples. Options:

’MH’: Metropolis Hastings Algorithm ‘MMH’: Component-wise Modified Metropolis
Hastings Algorithm ‘Stretch’: Affine Invariant Ensemble MCMC with stretch moves

Default: ‘MMH’

• jump – Number of samples between accepted states of the Markov chain. Default value: 1
(Accepts every state)

• nsamples (int) – Number of samples to generate No Default Value: nsamples must be
prescribed

• seed (float or numpy array) – Seed of the Markov chain(s) For ‘MH’ and
‘MMH’, this is a single point, defined as a numpy array of dimension (1 x dimension)
For ‘Stretch’, this is a numpy array of dimension N x dimension, where N is the ensemble
size Default:

8 Chapter 1. UQpy package

UQpy Documentation, Release 1.0.0

For ‘MH’ and ‘MMH’: zeros(1 x dimension) For ‘Stretch’: No default, this must be
specified.

• nburn (int) – Length of burn-in. Number of samples at the beginning of the chain to
discard. This option is only used for the ‘MMH’ and ‘MH’ algorithms. Default: nburn = 0

Type jump: int

Output: :return: MCMC.samples: Set of MCMC samples following the target distribution :rtype:
MCMC.samples: ndarray

class UQpy.SampleMethods.MCS(dimension=None, icdf=None, icdf_params=None, nsam-
ples=None)

Perform Monte Carlo sampling (MCS) of independent random variables from a user-specified probability dis-
tribution using inverse transform method.

Parameters

• dimension (int) – A scalar value defining the dimension of the random variables De-
fault: len(icdf)

• icdf (function/string list) – Inverse cumulative distribution for each random
variable. The inverse cdf may be defined as a function, a string, a list of functions, a list of
strings, or a

list of functions and strings

Each item in the list specifies the distribution of the corresponding random variable. If icdf[i]
is a string, the cdf is defined in Distributions.py or custom_dist.py If icdf[i] is a function,
the user must define this function in the script and pass it

• icdf_params (list) – Parameters of the inverse cdf (icdf) Parameters for each random
variable are defined as ndarrays Each item in the list, icdf_params[i], specifies the parame-
ters for the corresponding inverse cdf,

icdf[i]

• nsamples (int) – Number of samples to generate No Default Value: nsamples must be
prescribed

Output: :return: MCS.samples: Set of generated samples :rtype: MCS.samples: ndarray

Returns MCS.samplesU01: Set of uniform samples on [0, 1]^dimension

Return type MCS.samplesU01: ndarray

class UQpy.SampleMethods.STS(dimension=None, icdf=None, icdf_params=None,
sts_design=None, input_file=None)

Generate samples from an assigned probability density function using Stratified Sampling.

References: M.D. Shields, K. Teferra, A. Hapij, and R.P. Daddazio, “Refined Stratified Sampling for efficient
Monte Carlo based

uncertainty quantification,” Reliability Engineering and System Safety, vol. 142, pp. 310-325, 2015.

Input: :param dimension: A scalar value defining the dimension of target density function.

Default: Length of sts_design

Parameters

• icdf (function/string list) – Inverse cumulative distribution for each random
variable. The inverse cdf may be defined as a function, a string, a list of functions, a list of
strings, or a

1.5. UQpy.SampleMethods module 9

UQpy Documentation, Release 1.0.0

list of functions and strings

Each item in the list specifies the distribution of the corresponding random variable. If icdf[i]
is a string, the cdf is defined in Distributions.py or custom_dist.py If icdf[i] is a function,
the user must define this function in the script and pass it

• icdf_params (list) – Parameters of the inverse cdf (icdf) Parameters for each random
variable are defined as arrays Each item in the list, icdf_params[i], specifies the parameters
for the corresponding inverse cdf,

i_cdf[i]

• sts_design (int list) – Specifies the number of strata in each dimension

• input_file (string) – File path to input file specifying stratum origins and stratum
widths Default: None

Output: :return: STS.samples: Set of stratified samples :rtype: STS.samples: ndarray

Returns STS.samplesU01: Set of uniform stratified samples on [0, 1]^dimension

Return type STS.samplesU01: ndarray

Returns STS.strata: Instance of the class SampleMethods.Strata

Return type STS.strata: ndarray

class UQpy.SampleMethods.Strata(n_strata=None, input_file=None, origins=None,
widths=None)

Define a rectilinear stratification of the n-dimensional unit hypercube with N strata.

Input: :param n_strata: A list of dimension n defining the number of strata in each of the n dimensions

Creates an equal stratification with strata widths equal to 1/n_strata The total number of strata, N, is
the product of the terms of n_strata Example - n_strata = [2, 3, 2] creates a 3d stratification with: 2
strata in dimension 0 with stratum widths 1/2 3 strata in dimension 1 with stratum widths 1/3 2 strata
in dimension 2 with stratum widths 1/2

:type n_strata int list

Parameters input_file (string) – File path to input file specifying stratum origins and stra-
tum widths Default: None

Output: :return origins: An array of dimension N x n specifying the origins of all strata

The origins of the strata are the coordinates of the stratum orthotope nearest the global origin Example
- A 2D stratification with 2 strata in each dimension origins = [[0, 0]

[0, 0.5] [0.5, 0] [0.5, 0.5]]

Rtype origins array

Return widths An array of dimension N x n specifying the widths of all strata in each dimension
Example - A 2D stratification with 2 strata in each dimension widths = [[0.5, 0.5]

[0.5, 0.5] [0.5, 0.5] [0.5, 0.5]]

Rtype widths ndarray

Return weights An array of dimension 1 x N containing sample weights. Sample weights are equal
to the product of the strata widths (i.e. they are equal to the size of the

strata in the [0, 1]^n space.

Rtype weights ndarray

10 Chapter 1. UQpy package

UQpy Documentation, Release 1.0.0

static fullfact(levels)
Create a full-factorial design

Note: This function has been modified from pyDOE, released under BSD License (3-Clause) Copyright
(C) 2012 - 2013 - Michael Baudin Copyright (C) 2012 - Maria Christopoulou Copyright (C) 2010 - 2011
- INRIA - Michael Baudin Copyright (C) 2009 - Yann Collette Copyright (C) 2009 - CEA - Jean-Marc
Martinez Original source code can be found at: https://pythonhosted.org/pyDOE/# or https://pypi.org/
project/pyDOE/ or https://github.com/tisimst/pyDOE/

Input: :param levels: A list of integers that indicate the number of levels of each input design factor. :type
levels: list

Output: :return ff: Full-factorial design matrix :rtype ff: ndarray

1.6 UQpy.Surrogates module

This module contains functionality for all the surrogate methods supported in UQpy.

class UQpy.Surrogates.SROM(samples=None, cdf_target=None, moments=None,
weights_errors=None, weights_distribution=None,
weights_moments=None, weights_correlation=None, proper-
ties=None, cdf_target_params=None, correlation=None)

Stochastic Reduced Order Model(SROM) provide a low-dimensional, discrete approximation of a given random
quantity. SROM generates a discrete approximation of continuous random variables. The probabilities/weights
are considered to be the parameters for the SROM and they can be obtained by minimizing the error between the
marginal distributions, first and second order moments about origin and correlation between random variables.
References: M. Grigoriu, “Reduced order models for random functions. Application to stochastic problems”,

Applied Mathematical Modelling, Volume 33, Issue 1, Pages 161-175, 2009.

Input: :param samples: An array/list of samples corresponding to each random variables

Parameters

• cdf_target (list str or list function) – A list of Cumulative distribution
functions of random variables

• cdf_target_params (list) – Parameters of distribution

• moments – A list containing first and second order moment about origin of all random
variables

• weights_errors (list) – Weights associated with error in distribution, moments and
correlation. Default: weights_errors = [1, 0.2, 0]

• properties (list) – A list of booleans representing properties, which are required
to match in reduce order model. This class focus on reducing errors in distribution, first
order moment about origin, second order moment about origin and correlation of samples.
Default: properties = [True, True, True, False] Example: properties = [True, True, False,
False] will minimize errors in distribution and errors in first order moment about origin in
reduce order model.

• weights_distribution – An list or array containing weights associated with different
samples. Options:

If weights_distribution is None, then default value is assigned. If size of
weights_distribution is 1xd, then it is assigned as dot product

of weights_distribution and default value.

1.6. UQpy.Surrogates module 11

https://pythonhosted.org/pyDOE
https://pypi.org/project/pyDOE/
https://pypi.org/project/pyDOE/
https://github.com/tisimst/pyDOE/

UQpy Documentation, Release 1.0.0

Otherwise size of weights_distribution should be equal to Nxd.

Default: weights_distribution = Nxd dimensional array with all elements equal to 1.

• weights_moments (ndarray or list (float)) – An array of dimension 2xd,
where ‘d’ is number of random variables. It contain weights associated with moments.
Options:

If weights_moments is None, then default value is assigned. If size of
weights_moments is 1xd, then it is assigned as dot product

of weights_moments and default value.

Otherwise size of weights_distribution should be equal to 2xd.

Default: weights_moments = Square of reciprocal of elements of moments.

• weights_correlation – An array of dimension dxd, where ‘d’ is number of ran-
dom variables. It contain weights associated with correlation of random variables. Default:
weights_correlation = dxd dimensional array with all elements equal to 1.

• correlation – Correlation matrix between random variables.

Output: :return: SROM.sample_weights: The probabilities weights for each sample as identified through opti-
mization. :rtype: SROM.sample_weights: ndarray

1.7 Module contents

12 Chapter 1. UQpy package

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

13

UQpy Documentation, Release 1.0.0

14 Chapter 2. Indices and tables

Python Module Index

u
UQpy, 12
UQpy.Distributions, 1
UQpy.Reliability, 1
UQpy.RunModel, 4
UQpy.SampleMethods, 6
UQpy.Surrogates, 11

15

UQpy Documentation, Release 1.0.0

16 Python Module Index

Index

F
fullfact() (UQpy.SampleMethods.Strata static method),

10

L
LHS (class in UQpy.SampleMethods), 6

M
MCMC (class in UQpy.SampleMethods), 7
MCS (class in UQpy.SampleMethods), 9

R
RunModel (class in UQpy.RunModel), 4
RunModel.RunParallel (class in UQpy.RunModel), 5
RunModel.RunSerial (class in UQpy.RunModel), 6

S
SROM (class in UQpy.Surrogates), 11
Strata (class in UQpy.SampleMethods), 10
STS (class in UQpy.SampleMethods), 9
SubsetSimulation (class in UQpy.Reliability), 1

U
UQpy (module), 12
UQpy.Distributions (module), 1
UQpy.Reliability (module), 1
UQpy.RunModel (module), 4
UQpy.SampleMethods (module), 6
UQpy.Surrogates (module), 11

17

	UQpy package
	Submodules
	UQpy.Distributions module
	UQpy.Reliability module
	UQpy.RunModel module
	UQpy.SampleMethods module
	UQpy.Surrogates module
	Module contents

	Indices and tables
	Python Module Index

